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$ Department of Physics, University of Novi Sad, Novi Sad, Yugoslavia 
8 Institute for Theoretical Physics, University of Lausanne, Lausanne, Switzerland 

Received 15 May 1985 

Abstract. The type of phase transition in a chain of king spins with multispin interaction 
is studied in a transverse field, using strong- and weak-coupling expansions. The transition 
is shown to be of first order if more than three spins are coupled. The critical exponents 
for the three-spin coupling model are estimated. 

1. Introduction 

While second-order phase transitions can be studied conveniently by using various 
formulations of the renormalisation group transformation, the situation is much less 
satisfactory for first-order phase transitions. Although the concept of a discontinuity 
fixed point (Nienhuis and Nauenberg 1975) is useful in describing first-order phase 
transitions, these are not always associated with a discontinuity fixed point. Similarly, 
although detailed studies have been performed in finite-size scaling for systems with 
first-order phase transitions (Imry 1980, Fisher and Berker 1982, Blote and Nightingale 
1982, IglBi and Sdlyom 1983, Hamer 1983, Cardy and Nightingale 1983, Privman and 
Fisher 1983, Binder and Landau 1984), in many practical cases it is not easy to decide 
from the data for finite systems, whether the transition is of first or second order. This 
is the case for the multispin coupling model studied in this paper. 

The model was introduced by Turban (1982) and Penson et al (1982). The Hamil- 
tonian can be written in the form 

(1.1) 

where U: and uf are Pauli operators on site i. The value of m determines the number 
of neighbouring spins that are coupled. At zero temperature the system has a phase 
transition as the transverse field increases. Since it seems that there is a single phase 
transition in the system, the self-duality of the model predicts that it should be at 
( h / A ) *  = 1, independently of the number of coupled spins m. For m = 2 the model is 
the standard Ising model in transverse field which has a second-order phase transition. 
For m - m ,  however, mean field theory should be exact and the transition turns out 
to be of first order. There are controversial predictions for the critical value of m: 
above which the transition should be of first order. Mean field theory gives m, = 2. 
However renormalisation group calculations (Igldi et a1 1983) give the usual second- 
order behaviour for m = 3. The analysis of finite-size scaling results lead Penson et al 
(1982) to conclude that mc = 4. From a conjectured criterion for distinguishing between 

H = -A Ufuf+, . . . U:+,,-, - h C 
I I 

0305-4470/86/071189+07$02.50 @ 1986 The Institute of Physics 1189 



1190 F Iglo'i er a1 

continuous and discontinuous transitions (Livi er a1 1983), Maritan er a1 (1984) 
predicted that for m = 4 the transition is already of first order. Since finite-size scaling 
is not very sensitive in deciding when the character of the transition changes, other 
methods should be used. 

In this paper we use the series expansion method to determine the critical value 
of mC. The paper is organised as follows. The series obtained for the ground-state 
energy in the weak- and strong-coupling limits are presented in § 2. The series are 
analysed in 8 3, where we find that in fact mC = 3, and for this case, where the transition 
is still of second order, the critical exponents are also determined. The results are 
discussed in 0 4. 

2. Series expansion 

The weak- and strong-coupling series expansions for quantum spin systems, which are 
analogous to the high- and low-temperature expansions in classical statistical 
mechanics, and the analysis of the series by using different methods to determine the 
critical behaviour, have been proved to be very useful in the study of many systems 
(Hamer er a1 1979, Elitzur er a1 1979, Hamer and Kogut 1980, Marland 1981). We 
will apply this procedure to the multispin coupling model. 

The Hamiltonian of equation (1.1) can be split in two ways. If the multispin 
coupling A is stronger than the transverse field h, the latter can be treated in perturbation 
and an expansion in powers of h / A  can be generated. This strong-coupling expansion 
for the ground-state energy per site will have the form 

E /  N = -A C a , ( h / A ) "  for A 2 h. (2.1) 
n 

On the other hand, if the multispin coupling is weaker than the transverse field, a 
weak-coupling expansion in powers of A / h  can be generated. Due to the self-duality 
of the model, the series expansion coefficients will be the same in the two cases, i.e. 

E / N = - h x a n ( h / h ) "  for A S h (2.2) 
n 

and at A = h the two expressions match. This is valid even if only a few finite-order 
terms are calculated in the expansion. 

If the transition is of second order, then the two expressions give not only the same 
energy at A = h, but the left and right derivatives, calculated from the two expressions 
in their regions of validity respectively, are also identical at this point. Only the second 
derivatives will differ. On the other hand, if the transition is of first order, the weak- 
and strong-coupling expansions give different first derivatives on the two sides of the 
transition point, indicating a finite latent heat. 

If the expansion coefficients are calculated up to a finite order, the two expansions 
always give differing left and right derivatives at the transition point, although after 
extrapolating to n + 03 the difference may disappear, indicating a second-order phase 
transition. If, however, the transition is of first order, the difference between the two 
derivatives should remain finite even when n +. cc. 

We have performed the weak- and strong-coupling series expansions for the ground- 
state energy of the model given in equation (1.1) up to tenth order for m = 2, 3 and 
4, while for m = 5 ,  6 and 7 up to eighth order. The series expansion coefficients are 
given in table 1. 
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Table 1. Series expansion coefficient a , (m) for the model with m coupled spins in nth 
order of perturbation. 

I 1 1 I 1 - 
14 

- 
12 

- 2 a I B 10 

4 0.001 562 500 0.018 518 52 0.014973 96 0.011 833 33 0.009 490 74 0.007 762 39 
6 0.003 906 25 0.005 607 00 0.004 573 68 0.003 466 19 0.002 628 71 0.002 026 79 
8 0.001 525 88 0.002 512 61 0.002 051 43 0.001 48476 0.001 061 45 0.000 769 53 
10 0.OOO 747 68 0.001 379 29 0.001 124 33 

3. Analysis of the series 

As discussed in the previous section, finite-order perturbation theory always gives a 
finite latent heat, a finite difference between the derivatives of the ground-state energy 
at A = h, when calculated from the weak- or strong-coupling expansions. This nth-order 
latent heat L, is defined as 

Here E ;  and E :  are the ground-state energies calculated in the strong- and weak- 
coupling expansion, respectively, keeping terms up to nth order. The values obtained 
using the results of the previous section are given in table 2 .  

In the extrapolation to n +CO the exact solution of the m = 2 case (Pfeuty 1970) 
can be used as a guide. It is easily seen that for the Ising case the expansion coefficients 
can be written in the form 

n 

aZn = fl [ ( 2 i - 3 ) / 2 i I Z .  
i =  I 

( 3 . 2 )  

After summing up the series with these coefficients one recovers the exact result of 
Pfeuty (1970). The latent heat in nth order can be approximated by 

One can see that the latent heat goes to zero roughly as l / n .  This expression is the 
special case of the general scaling form valid for second-order transitions (Igl6i 1986) 

Here CY is the specific heat exponent. This kind of scaling behaviour has been used 
by one of us to determine the critical exponents of various physical quantities from 
series expansions. 

L,=(2 / . r r ) (n+$) - ' .  ( 3 . 3 )  

L,o: n-(l-=).  (3.4) 

Table 2. The latent heat L,( m )  in nth order of perturbation theory calculated from equation 
(3.1) for the model with m coupled spins. 

Order L,(2) L"(3) L" (4) L"(5) Ln(6) L"(7) 

2 0.25 0.5 0.625 0.7 0.75 0.7857 
4 0.1406 0.3704 0.5202 0.6172 0.6836 0.7314 
6 0.0976 0.3087 0.4699 0.5790 0.6546 0.7091 
8 0.0748 0.2710 0.4391 0.5568 0.6387 0.6975 
10 0.0606 0.2448 0.4178 
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According to equations (3.3) and (3.4),  a plot of log L, against log(n+i)  should 
give a straight line for second-order phase transitions, with a slope -( 1 - a). This plot 
is shown in figure 1 for different values of the number of coupled spins. The points 
lie very well on a straight line for m = 2 and 3, while for m 2 4 there are considerable 
deviations. The slope of the line for m = 3 is approximately $. Therefore we plot in 
figure 2 the value of L, as a function of ( n  +;)-''*. As is seen, the values are on a 
straight line not only for m =3 ,  but for larger m values as well. For m = 3  the 
extrapolated latent heat vanishes, and thus the transition is of second order. The error 
in the extrapolation of the latent heat is smaller than 0.005. For m 2 4, however, the 
latent heat differs significantly from zero. In these cases the transition is of first order. 
The accuracy of the extrapolation is rather good. This is due to the fact that the ratio 
of the coefficients a, (m) /a , (m + 1 )  varies only slowly with n, as can be read off from 
table 1. This quantity is smaller than one for m = 2, but it is larger than unity for 
m 3 3. This ratio is extremely stable for m = 3. Supposing that this ratio is the same 
in higher orders of the expansion as well, i.e. an(3)/a,(4) i= 1.227, independently of n, 
we estimate the latent heat for the case m = 4  to be 

L ( m  = 4 ) =  L, , (m = 4 ) - L I o ( m  =3) [~ , (4 ) /~ , (3 ) ]=0 .218 .  (3.5) 
This value is in good agreement with the estimate from figure 2. The latent heat for 
larger values of m can be extrapolated in the same way, however, and in this case the 
accuracy is somewhat smaller. The calculated latent heats are shown in figure 3, 
together with the series expansion results. The latent heat for large values of m behaves 

2 4 6 8 10 
L o g l n + i )  

Figure 1. The nth-order latent heat L, against n + f  on a log-log plot for different values 
of the number of coupled spins. 
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1 I m  

Figure 3. The nth-order latent heat and the extrapolated value for n + oc) plotted for different 
m values; n = 4  denoted by +, n =6 by 0, n = 8  by A and n = 10 by x .  



1194 F Ig16i er a1 

as L = 1 - 312 m. At m = 3 the latent heat becomes zero and remains identically zero 
for smaller values of m. 

Next we estimate the critical properties of the model for m = 3. Since we have 
calculated the ground-state energy only, the specific heat exponent a can be obtained 
from the second derivative. The series is rather short and therefore different methods 
have been used to get a best estimate. The result of the ratio method (Gaunt and 
Guttmann 1974) is a = 0.53k0.03. By using the scaling relation (3.4) we obtain 
a = 0.54i0.02. The best result is achieved by Pad6 analysis (Gaunt and Guttmann 
1974) of the series. According to the Pad6 approximants (table 3) we obtain a =  
0.554 f 0.001. Thus all these estimates are consistent with the prediction 

a =0.55*0.01. (3.6) 

The critical exponent of the correlation length can be calculatea from the hyperscaling 
relation dv  = 2 - a, and we get v = 0.73 i 0.01. This value is somewhat smaller than 
the result obtained by Igl6i er a1 (1983) from the renormalisation group calculation 
and is close to the value determined by Penson et 0' (1982) from finite-size scaling. 

Table 3. Pad6 analysis of the series for the logarithmic derivative of the specific heat in 
the m = 3 model. 

M Y '  2 3 

1 0.5783 0.5587 0.5552 
2 0.5519 0.5544 
3 0.5542 

4. Discussion 

In the present paper the phase transition in a chain of Ising spins coupled by a multispin 
interaction and submitted to a transverse field has been studied. The weak- and 
strong-coupling series expansions for the ground-state energy have been performed 
up to tenth order in the perturbation. It has been shown that in the cases when more 
than three neighbouring spins are coupled, the transition is of first order. This method 
is thus more sensitive than finite-size scaling to determine the order of transition. By 
the latter method the m = 4 case still seemed to behave as having a second-order phase 
transition (Penson er a1 1982). As shown by Igl6i and S6lyom (1983) and Hamer 
(1983) the finite latent heat in a first-order transition can be determined from finite- 
size scaling calculations as well but the limits L+m, where L is the length of the 
system, and A + A *  cannot be interchanged. 

The analysis of the series allowed us to estimate the critical exponents a and v for 
the case m = 3. The values obtained differ from the values known for the four-state 
Potts model indicating once more that these models do not belong to the same 
universality class (Igl6i er a1 1983), although in both cases a fourfold degeneracy is 
lifted at the transition. 
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